By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.

Sheet Metal Design Tips

Sheet Metal Design Tips

Many products are made from sheet metal, which is nothing more than metal which is rolled into very thin sheets.  Sheet metal can be made from any number of metals, including aluminum, titanium, copper, and brass. The thickness of sheet metal is called “gauge,” with a higher gauge number equivalent to the thinner thickness.  The gauge required depends upon the use the sheet metal will be put to.  Each used for sheet metal requires a specific thickness or gauge. A higher gauge number indicates a thinner piece of sheet metal.

thinner piece of sheet metal

Some products which use sheet metal include:

  • Automobile bodies
  • Wings and fuselage coverings on airplanes
  • Roofing, gutters, ductwork other building materials
  • Furnaces, air conditioners, and other appliances

Sheet metal is versatile, durable and strong. It can be easily shaped and fitted for both visual and functional benefits, which gives it a great advantage for use in manufacturing and building.   It is the visual and functional uses that determine both the design and the fabrication.

While design and fabrication are two separate and distinct operations, the sheet metal designer must understand fabrication processes and requirements in order to provide workable designs.  The fabrication process requires many complicated and sometimes dangerous processes.  Proper attention to design can help to eliminate complications and reduce dangerous processes.

Typical Challenges with Sheet Metal

Ensuring that parts fit together seamlessly, bends are angled properly and counterbores and countersinks work are just some of the challenges faced when designing for sheet metal fabrication.

Bends are probably the most frequent feature of sheet metal parts and can be formed by a variety of methods and machines.  Here are two tips that one of our sheet metal engineers shared with me:

  • When multiple bends are on the same plane try and design the part so the bends all face the same direction.
  • Avoid large parts when possible, and especially large parts with small or detailed flanges.

Counterbores and Countersinks require care to preserve the strength of the material and prevent deformation of the features during forming.  For instance:

  • The distance between two countersinks should be kept to at least 8 times the material thickness.
  • To ensure strength the distance between a countersink’s edge and the edge of the material should be 4 times the material thickness.
  • To prevent any deformation of the hole the edge of the countersink should be at least 3 times the material thickness from the tangent point of the bend.

3D CAD for Sheet Metal Design

3D CAD has helped to make sheet metal fabrication both easier and safer by enabling designers to visualize fabrication processes in virtual 3D, ensuring that parts fit together seamlessly, bends are angled properly and counterbores and countersinks work.

I’m not an expert at sheet metal design, but I do understand 3D CAD and know that using the right 3D CAD software package can make many design processes faster, easier and more accurate.  One of the 3D CAD software packages that our engineers work with regularly is SOLIDWORKS.

We like the flexible design approach that SOLIDWORKS offers.  For instance, when doing sheet metal design for customers we find that SOLIDWORKS lets us convert imported CAD models, which is important when we’re working with a client that has a design, or a partial design in another format.

Here are some of the sheet metal design tasks we routinely use SOLIDWORKS for:

  • Generating Base, Edge, Miter, and Swept Flanges
  • Generating bends, including Lofted Bends, Sketched Bends, and more
  • Using Bend Tables for bend allowance/bend deduction
  • Using Forming Tools to create features like ribs, louvers, lances, embosses, and extruded flanges
  • Adding weld details to sheet metal parts on models or drawings
  • Automatically flattening parts to generate flat patterns for manufacturing with bend compensation
  • Automatically estimating sheet metal part manufacturing costs for our clients as we design

Getting work from clients who have started a design or who need a design created around a group of existing parts is a regular fact of life in our sheet metal design department.  We like the ease with which SOLIDWORKS makes it easy for us to work with existing parts, as well as to create original parts.

Recent Posts

Whether to improve the car’s aerodynamics or make the driver’s experience more comfortable in the cockpit, WTRAndretti’s engineers have decided to trust and rely on Creaform’s expertise and technology.

CAD Outsourcing Doesn’t Have to Be Done in India Do a Google search for “CAD Outsourcing” and what you’ll find is lots of firms located in India, which is fine if you’re prepared to go off-shore for CAD services. But what if your U.S. based company prefers to stay a...

November 3, 2023
|
Uncategorized

AutoCAD Fiber Optic Designs & Drawings

Before proceeding forward in explaining the affinity between AutoCAD and Fiber Optic, it would be prudent to rationalize the utility of optical cables. When communicating between systems, either via the internet or via an internal network system, a medium needs to be...